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Transverse resolution improvement using rotating-
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The ability to improve the limited resolving power of optical imaging systems while approaching the theoret-
ical diffraction limit has been an attractive discipline with growing interest over the last years due to its ben-
efits in many applied optics systems. This paper presents a new approach to achieve transverse superresolu-
tion in far-field imaging systems, with direct application in both digital microscopy and digital holographic
microscopy. Theoretical analysis and computer simulations show the validity of the presented approach.
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1. INTRODUCTION

Since Ernst Abbe [1] discovered at the end of the 19th
century that the resolution of an optical imaging system
is limited by diffraction, there have been a lot of attempts
to go beyond this resolution limit. Abbe’s work was ap-
plied to the field of microscopy, and it concludes that con-
ventional high-resolution microscopy needs high numeri-
cal aperture (NA) objectives. However, high NA imaging
lenses are costly and not always practical (depending on
the application).

In accordance with Abbe’s theory, filter theory applied
to the spatial-frequency domain suggests that an optical
imaging system acts as a low-bandpass filter selecting the
low spatial frequencies of the object’s spectrum [2]. Thus,
the imaging system can be represented in the spatial-
frequency domain by a limited aperture, which limits the
maximum resolution that can be achieved with this imag-
ing system. In summary, with a fixed illumination wave-
length, the resolving power of an imaging system is de-
fined as a function of its NA and can reach the \/2
maximum value for air immersion optical systems and in-
coherent illumination. In that sense, the aim of super-
resolution (SR) techniques is to produce an improvement
in the resolution limit without changes in the physical
properties of the optical system in comparison with the
spatial resolution presented by the same optical system in
the absence of such approach. Based on this concept,
many approaches have been proposed during the years to
achieve SR in several disciplines such as near-field [3]
and far-field [4] imaging, computational SR by digital al-
gorithms [5], superresolving pupils using apodization
techniques [6], and imaging by scanning procedures [7].

The present paper is devoted to far-field imaging SR
techniques. These techniques can be understood as the
generation of a synthetic aperture (SA) that expands the
frequency coverage of the optical system beyond the limit
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defined by its cutoff frequency, that is, beyond its physical
limited aperture. This procedure needs information
theory [8-11] and a priori knowledge of the input object.
By knowing that the object belongs to a certain class
[12,13], it is possible to encode useful additional informa-
tion regarding the object into unused channels of the op-
tical system in such a way that it will pass through the
system limited aperture. Some examples of such a priori
information are that the object may be approximately
time independent [14,15], or polarization independent
[16], or wavelength independent [17], or one-dimensional
(1-D) [18], or with limited intensity dynamic range [19].
In our case, we are interested in encoding spatial-
frequency content of the object into the temporal degree of
freedom by knowing that the object is temporally re-
stricted. With the appropriate decoding process of such
additional information, a superresolved image with en-
hanced spatial resolution can be obtained.

The manuscript is organized as follows. Section 2 pro-
vides a wide introduction to time-multiplexing SR. Sec-
tion 3 presents a new approach to achieve transverse SR
in both digital imaging and digital holographic imaging.
Sections 4 and 5 include a theoretical analysis regarding
our approach, while Sections 6 and 7 provide proof of con-
cept as a simulation process. Finally, Section 8 concludes
the paper.

2. TIME-MULTIPLEXING
SUPERRESOLUTION

As previously shown, time multiplexing is a well-known
SR approach applied to temporally restricted objects and
can be implemented in a wide variety of ways [4,13-15].
The basic idea underlying a time-multiplexing SR ap-
proach is to downshift the high-frequency components of
the object’s spectrum to low frequency ones. This is ac-
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complished by encoding the object spatial-frequency infor-
mation into temporal-frequency information. Thus, those
spatial-frequency components that are not transmitted by
the system’s aperture under conventional operation now
fall inside and can pass through it. Obviously, this
temporal-frequency coding needs to be decoded to obtain a
high-resolution image; that is, the additional spatial-
frequency information must be returned to its original po-
sition in the object’s spectrum. Time-multiplexing SR has
also been interpreted in the Wigner space by means of the
space—bandwidth product adaptation [20,21].

Bearing in mind this working principle, many ap-
proaches use illumination through physical gratings to
achieve the SR effect [13,15,18,22-24]. But many of them
have the main drawback related to the need for attaching
the encoding grating to the input plane [13,15,18]. One
way to avoid such physical grating attachment is to pay
with field of view instead of time [22—24]. Another way is
by using optically generated gratings [25-30]. Thus,
structured illumination microscopy [25], patterned excita-
tion microscopy [26], laterally modulated excitation mi-
croscopy [27], and harmonic excitation light microscopy
[28] have been proposed as methods to improve spatial
resolution by means of SA generation in fluorescence mi-
croscopy. SR microscopy via structured illumination light
and optical nonlinearity has also been applied to fluores-
cence microscopy [29,30].

Another way to achieve time-multiplexing SR is by us-
ing speckle patterns [31,32] instead of grating ones.
Speckle patterns can be understood as a continuous case
of the discrete one (represented by a diffraction grating)
in which one can achieve two-dimensional (2-D) SR by
simply coding—decoding the input and the output, respec-
tively, with a given speckle pattern. Moreover, speckle
pattern projection systems appear as simpler setups in
comparison with the projection systems used in struc-
tured illumination.

Time-multiplexing SR can also be attained using coher-
ence coding [33,34]. In this case, the mutual intensity
function of the illumination beam is used to encode spa-
tial information in a way analogous to time multiplexing
but with multiplexing time slots that are given by the co-
herence time of the illumination beam. Coherence coding
can also be obtained by using incoherent light interferom-
etry and applying it to SR [35,36]. Because the time varia-
tion of most objects is lower than the coherence time of
the source—that is, they can be considered temporally re-
stricted in practice—the information coding can be implic-
itly made on the coherence of the illumination source. Af-
ter that, interferometric image-plane recording with a
postprocessing digital stage allows the needed decoding to
achieve the SR effect.
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Over the past years, time-multiplexing has been com-
bined with digital holography [37-50] with the motivation
of recovering both amplitude and phase distribution of
the sample under test. Thus, optical coherent tomography
and three-dimensional microscopy [37,38], interferomet-
ric lithography [39], polarization imaging [40], phase-
aberration and image-distortion compensation [41,42],
phase-shifting digital holography [43], and interferomet-
ric imaging [35,36,44-48] have been proposed as new
methods with a real potential in industrial applications.
In particular, a significant case of interferometric imaging
is obtained in the field of microscopy [44-50], where SA
generation permits high-resolution images using low-NA
microscope lenses. These techniques are based on produc-
ing an off-axis illumination onto the object to downshift
its high-frequency content and to enable its transmission
through the system limited aperture in a similar way as
gratings and speckle are able to accomplish. After that,
and using holographic image plane recording, a SA is gen-
erated by digital filtering and a relocation of each trans-
mitted frequency band to its original position in the ob-
ject’s spectrum. And finally, a superresolved image can be
obtained by simple Fourier transformation (FT) of the in-
formation contained in the SA.

3. ROTATING-GRATING APPROACH

In this section, a new approach to achieve time-
multiplexing, 2-D SR in imaging systems via a rotating
grating and digital postprocessing is presented. Although
the analysis included is deduced for a unity magnification
imaging system in order to make the involved theory sim-
pler, the approach is directly applicable to the field of mi-
Croscopy.

In the suggested approach, a physical grating that is
placed near the input object (but not in close contact) is
used to generate structured illumination over the input
object. Thus, provided that the diffracted beams of the
grating overlap over the imaged region of the object,
structured illumination is ensured, and the problems
arising from the need to attach the grating physically to
the object at the input plane are eliminated. Moreover, be-
cause the decoding process is performed digitally as in
[15], the approach presented avoids the need for synchro-
nization between both encoding—decoding gratings during
the SR process.

The concept of the proposed method can be easily un-
derstood through the optical setup shown in Fig. 1. We
call this setup digital imaging approach (DIA). For sim-
plicity, to show the performance of the proposed approach,
let us assume that the imaging system has a 4F configu-
ration. Thus, the input object is imaged through two iden-

Fig. 1. (Color online) Optical setup for the DIA. The 1-D grating is mounted on a rotatable platform to accomplish the 2-D SR process.
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tical lenses L1 and L2 onto a CCD camera that records
the intensity distribution. A circular aperture with radius
Av is placed at the Fourier plane of the optical setup in
order to stop down the resolution of the imaging system.
Incoming light from a point source passes through a col-
limation lens L and produces on-axis collimated illumi-
nation over the optical setup. This collimated beam
reaches the 1-D diffraction grating placed before the ob-
ject. As we will see in the mathematical analysis, struc-
tured illumination is produced on the object by simply as-
suring the overlapping of the different diffraction orders
of the 1-D grating over the imaged region of the object,
that is, over the field of view provided by the imaging sys-
tem.

Another way to understand structured illumination is
in terms of tilted beams. In our case, tilted illumination is
generated by each one of the collimated diffracted beams
produced by the 1-D grating. This fact allows the trans-
mission of different object frequency bands through the
limited system aperture at the same instant. If a fre-
quency band is shifted at the image space to its original
position in the object’s spectrum, then a 1-D superre-
solved image is synthesized. To obtain 2-D SR, the 1-D
grating is placed on a rotary stage in order to allow off-
axis illumination over the full 2-D frequency space of the
object. But a relocation of each transmitted frequency
band is needed for each rotation angle.

The present approach, called rotating-grating ap-
proach, performs the relocation using digital postprocess-
ing of each recorded image for each orientation of the 1-D
grating. Thus, the process can be carried out using con-
tinuous movement of the 1-D grating and storing in the
computer memory a continuous sequence of images with
the only limitation being the CCD recording time between
consecutive images. Once the image sequence is recorded,
digital postprocessing to achieve the SR effect can be per-
formed using a priori information about the angular
rotating-grating speed and its initial orientation. Angular
rotation speed is needed to know the angular separation
between two consecutive stored images. Then, it is pos-
sible to properly relocate each stored FT image in the
digital decoding process. Initial line-grating orientation
defines the starting point in the digital decoding process.
Both angular rotation speed and initial orientation of the
encoding grating can be obtained using calibration proce-
dures prior to the SR approach.

In a way similar to the optical setup shown in Fig. 1 but
splitting the illumination beam before it reaches the 1-D
grating and reinserting it in off-axis mode at the recorded
plane, an off-axis digital hologram can be recorded. Thus,
the optical setup presented in Fig. 1 is capable of perform-
ing the superresolved imaging approach of both ampli-
tude and phase object distribution because of the holo-
graphic recording process. To obtain this, the decoding
must be produced over the diffraction order of the re-
corded hologram sequence. Let us call this modification of
DIA digital holographic imaging approach (DHIA).

4. MATHEMATICAL ANALYSIS OF THE DIA
APPROACH

In the following, a mathematical derivation of the
rotating-grating approach for DIA is presented. In DIA,
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the on-axis collimated illumination beam impinges on the
1-D grating as is depicted in Fig. 1. The 1-D grating is
placed on a platform that can be rotated along the system
optical axis. Let us describe the amplitude distribution of
such grating in terms of its Fourier coefficients:

Uy(x0,50) = >, C,, exp{~j2mmvo[x, cos 6(¢) +y, sin 6(t)]},

1)

0, vy being the rotation angle and the basic frequency of
the grating, respectively. Note that the rotation angle is a
function of time [#=6(¢)]. The amplitude distribution just
infront of the input object is obtained by Fresnel propaga-
tion of Eq. (1). Thus, after some mathematic operations,
one arrives at

U,(x,y) = E C, exp{-j2mnyy(x cos O+y sin 0)}, (2)

where C;L=Cn(j)\z)exp{jkz}exp{—jrr)\znzVOZ} and z is the
propagation distance.

Equation (2) describes the amplitude distribution un-
der Fresnel approximation of a 1-D grating with new C,,
complex coefficients; this amplitude distribution illumi-
nates the input object as

Uppla,y) = t(x,y) X, Cy, exp{-j2mmvy(x cos 0+ sin 0)},

(3)

where IP denotes input plane, and #(x,y) represents the
complex amplitude distribution of the input object. As we
can see in Eq. (3), we have obtained structured illumina-
tion on the object in a way similar to the case when the
encoding grating is attached to the object. But now, the
new grating coefficients for the different diffraction orders
are a function of the z propagation distance.

At the Fourier plane FP of the optical system, a FT of
the previous amplitude distribution is obtained and mul-
tiplied by the circular limited aperture as

Upp(u,v) = [f(u,v) ® E C,' 8(u +nvgcos 0,v

+ nyg sin 0)]circ(i), (4)
Av
(u,v) being the spatial-frequency coordinates, p the polar
coordinate in the frequency domain [defined as p
=\u?+12 (all computations are done in normalized units
of N\F where \ is the wavelength of the illumination and ¥
is the focal length of the lenses], ® the convolution opera-
tion, 7 the FT of ¢, and Av the radius of the circular aper-
ture.

Now, a second lens performs the second FT providing
the following amplitude distribution at the output plane:

Uoulx,y) = E C,'[t(-x,— y)exp{j2mnvy(x cos 0 +y sin 6)}]

® disk(Avr), (5)

where r=\x2+y? is the radial coordinate at the spatial do-
main and disk is the inverse FT of the circ aperture func-
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tion. Then, the CCD computes the intensity distribution
from Eq. (5) as

Tow(x,y) = >, C,'C,, " {[t(-x,~y)

Xexp{j2mnvy(x cos 6 +y sin 0)}] ® disk(Avr)}
X{[¢(- x,- y)exp{j2mmvy(x cos O+ y sin 6)}]*
® disk(Avr)}, (6)

which is digitally multiplied by the decoding grating. As-
suming a digital decoding grating having the same basic
frequency vy as the encoding one and with a rotation
angle ¢=¢(t) but ¢ # 6, the final decoding intensity distri-
bution is

I5u(%,5) = Lou(x,) >, By, exp{-j2mkvy(x cos ¢ +y sin ¢)}.
k

(M

Let us now observe the Fourier domain of Eq. (7). A
little algebra provides

?Eu,v) = E (\2)2C,C,,"By, exp{—jm\z(n? - m?)v,%}

n,m,k

_ P
X{t(u,v){circ(A—> ® Su +nyycos 6,v
14

+nysin 0)]} * {?(u,v){circ<i>
Av

,ﬁu,v;é’) = 2 E E (\2)%C,C, B), exp{- jmrz(n? - m?)v,?}

6 n,m k=n-m
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® 8(u + mvg cos 0,v + myg sin 0)} }
® 8{u —[(n — m)cos 0 -k cos ¢]vg,v
—[(n —m)sin 6 -k sin @]y}, (8)

where * stands for the correlation operation.

Leaving aside constant coefficients, in order to obtain a
superresolved image, two conditions must be fulfilled. The
first states that the basic period of the encoding grating
must be properly matched with the radius of the circular
coherent transfer function (CTF) of the imaging system,;
that is, vg=2Av. If this condition is satisfied, a SA genera-
tion similar to that represented in Eq. (A2) can be ob-
tained (see Appendix A). The second condition implies
that the convolution with the last delta function must be
centered at the Fourier domain. In such a case, the result
is similar to that obtained in Eq. (A3) (see Appendix A).
The second condition is accomplished if (n-m)cos 6
—k cos ¢=0 and (n—m)sin 6—k sin ¢=0, which means that
¢=0+lm,1=0,1,2,... and k=n-m.

The fact that ¢=6+[m, [=0,1,2,... implies that the
digital decoding grating must have the same line orienta-
tion as that used to perform the encoding process. The
condition given by k=n-m suggests that Eq. (8) must be
separated into three different terms in order to analyze
them separately; that is

_ P
{t(u,v)|:circ<A—) ® 8u +nyycos 6,v + nyy sin 0):| }
14

s {'f(u,v){circ(%) ® 8(u + mwycos 6,v + my, sin 0)]} +> > > (\»)Yc,*B,
14

0 n=m k#n-m

. p _ p
X{ﬂ”m){drc(;) ® &(u +nvy cos 6,v +nyy sin 9)}} ® {t(U,U){CiI‘C<A—> ® S(u +nyycos 6,v + nyy sin 0)}}
v v

® Su+kvycos v +krgsin ) + D, >, > (

0 n#m k#n-m

. - p
\2)2C,C, ‘B, exp[-jm\z(n? — m?) VOZ]{t(u,v) [circ(A—>

14

14

_ P
® Su +nyycos 6, + nyy sin 0):|} * {t(u,v)|:circ(A—> ® Su + muyy cos 6, + my, sin 9)]}

® u—(n—m—k)vycos 6,0 — (n—m—k)vysin 0] =I'1(w,v;0) + I o(w,v;0) + I 5(w,v;0). (9)

Note that the indexes (n,m k) run over all possible val-

ues. The first term, I’ {(u, v; 6), corresponding to the index
combination of k=n-m, Vn,m, yields the SR effect when
the overall process is performed, that is, provided that
both encoding and decoding gratings are rotated to com-

pletely ensure the 2-D full coverage of the object’s spec-
trum. This condition is produced when the rotation angle
is at least 180°: 6=0° to 180°. Then, the CTF of the imag-
ing system is convolved with a combination of delta func-
tions that implies the generation of a SA. We can rewrite
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this first term as

T;(u,v; 0) = (}\2)22 E C,C,, By, exp[—jm\z(n? - m?)v,?]

n,m k=n-m

X[#(w,v)SA,(u,v)] = [E(u,v)SA,,(u,v)], (10)

where

p

SA, (u,v) = 2 circ(A—> ® Su +nyycos 6,v +nyysin 6).
9 14

(11)

Comparing Eq. (10) with the desired result for DIA [Ap-
pendix A, Eq. (A3)], they coincide, provided that

()\Z)zcncm*Bn—m exp[—j'rr)\z(nz - m2) Voz] = AnAmh
(12)

The second term, I'9(u,v; 6), is due to the index combi-
nation n=m, Vk #n-m. For simpler analysis, this second
term can be separated into two groups, those correspond-
ing to the index combinations given by n=m=0 and n
=m+#0:

Tow;0= S S ()?CB,

0 n=m=0 k#n-m

_ . p . . p
X | #(u,v)cire Ay * | T(u,v)cire e

® 8(u + kvy cos 0,0 + kg sin 6)

+> X 2 ()?C,B,

0 n=m#0 k#n-m

_ P
X{t(u,v)|:circ<A—> ® 8u +nyycos 6,v
v

+ nvg sin 0):|}

_ P
* {t(u,v){circ(A—> ® Su +nyycos 6,v
14

+ nvg sin 0):|}

® Su + kvycos 6,v + kg sin 6). (13)

The first addend of Eq. (13) causes a high distortion in
the final superresolved image. Basically, it implies that
the central frequency band of the object’s spectrum is po-
sitioned at the frequencies defined by the diffraction or-
ders of the decoding grating. And because most of the ob-
ject’s spectrum intensity corresponds to the DC term, the
first addend in Eq. (13) implies significant distortion in
the decoded spectrum. As we can see in such first term,
the object’s spectrum is band limited by the system aper-
ture and the autocorrelation result is centered at the po-
sitions related to the diffraction orders of the decoding
grating for each rotation angle §. When the complete ro-
tation process is performed, that is, when 6 goes from 1°
to 180°, the DC term follows a circle at the Fourier do-
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main. This circle causes a high distortion in the superre-
solved image when FT is computed.

In addition to the previous distortion term, the second
addend in Eq. (13) also distorts the final image. It corre-
sponds with the autocorrelation (n=m#0) of the fre-
quency bands selected by the +1st diffraction orders of the
encoding grating. These autocorrelation terms contribute
to increase the distortion of the final superresolved image.

Finally, the third term I’'3(w,v;6) in Eq. (9), given by
the remaining index combination n#m, Vk#n-m,
means the generation of cross correlation terms between
different frequency bands corresponding with high-
frequency slots in the object’s spectrum. This contribution
to image distortion will be lower when compared with the
previous ones:

,I\J'3(u,v;6)=2 2 2 (\2)2C,C,, "B}, exp[— jm\z(n?

0 n#m k#n-m

- m2)v02]{f(u,v){circ<£> ® 8u
Av
+nvy cos 0,v +nyy sin 0)} } * {?(u,v)

p
X{circ(A—> ® Su + muyy cos 6,0

14
+ my, sin 0)}} ® u—(n-m-Fk)y,cos 6,v

—(n-m-k)yysin 6]. (14)

The previous mathematical development shows that an
additional digital postprocessing is needed to obtain a
high-quality, distortion-free final image. Such additional
process consists of the addition into one image of all the
FT of each stored CCD intensity image that was obtained
for each 6 angle orientation of the encoding grating. Let
us name each one of such Fourier domain images partial
spectral image. From Eq. (6), it is possible to derive the
expression of each partial spectral image. After that, the
spectral distribution resulting from the addition of all the
partial spectral images is replicated to the positions de-
fined by the nonzeroth diffraction orders of the decoding
grating:

7(u,v; 0 = 2 2 E (\2)2C,C,, By, exp[— jm\z(n? - m?)v,%]

6 n,m k#0

_ p
X{t(u,v){circ(A—> ® Su +nyycos 6,v
14

+nv,sin 0)]} * {f(u,v){circ<i> ® u
Av

+ muy, cos 6,v + my, sin 0)}} @Ju-(n-m
—k)vycos O,v—(n—m —k)yysin 6]. (15)

Eq. (15) can also be divided into two terms according to
the analysis performed in Eq. (9):
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’FJ(u,v;ﬁ) = 2 E E ()\2)2|Cn|23k{?(u,v){circ<f) ® Su
14

0 n=m k#0

+nvycos 0,v +n, sin 0)}} * {f(u,v)

p
X {circ(A—> ® Su +nyycos 6,v + nyy sin 0)]}
14

® S(u — kv cos 0,v — kv, sin 6)

+> > > (\2)?C,C,, B, exp[-jmhz(n?

0 n#m k#0

_ P
_ mZ)VOZ]{t(u,v)|:circ<A—) ® 8u +nyycos 6,v
14

+nvysin 0):|} * {f(u,v)[circ(Ai) ® Su

+ muy cos 0,0 + my, sin 0)}} ® 8u - kv cos 6,v

—kyysin ). (16)

The first addend in Eq. (16) is exactly the same as the

one represented as I's(u,v;6) in Eq. (9). Thus, the two
main distortion factors of the final superresolved image
[Eq. (13)] can be avoided by simple subtraction in a digital
postprocessing. On the other hand, the second addend in
Eq. (16) also removes some of the distortion terms pre-

sented in I'3(u,v; 6). Equation (14) represents the genera-
tion of cross correlation terms (n #m) between different
frequency bands. Such distortion terms are duplicated to
the positions defined by k& #n—-m. The second addend in
Eq. (16) also implies the generation of cross correlation
terms (n #m) but placed at the nonzeroth diffraction or-
ders (k+#0) of the decoding grating. So, those distortion
terms generated in Eq. (14) and placed at the nonzeroth
diffraction orders will also be removed by the digital post-
processing subtraction. Only the cross correlation terms
located at the zeroth hologram order will remain. But
those terms will have low distortion contribution because
they come from the cross correlation (n #m) of different
frequency bands in the object’s spectrum:

Trew,v;0=> S (\2)2C,C,, "By exp[- jmhz(n? - m?)vy?]

0 n#m

14

+nysin 9)}} * {f(u,v)[circ(%) ® Su

+ mujg cos 6,0 + my, sin 0):|}, (17)

_ P
X{t(u,v)[circ(A—) ® 8u +ny,cos 6,v

where I'gp(u,v;6) is the remaining distortion contribu-
tion to the frequency domain.
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5. MATHEMATICAL ANALYSIS OF THE
DHIA APPROACH

In a way similar to the theoretical analysis presented for
DIA, a theoretical foundation for DHIA can be formu-
lated, the only consideration being to introduce a coherent
reference beam over the CCD output plane in the record-
ing process. Thus, instead of repeating again the whole
mathematical analysis, the following summarizes the key
equations for DHIA and presents some figures to help un-
derstand the contribution of every term. In DHIA, the
amplitude distribution at the output plane comes from
the addition of Eq. (5) with a linear phase factor repre-
senting the coherent off-axis reference beam:

U' ouix,y) = E C,'{t(-x,— y)exp[j2mnvy(x cos 0+ y sin 6)]}

® disk(Avr) + R exp[—j2muex], (18)

mo and R being the bias carrier frequency and the con-
stant amplitude of the reference beam, respectively. For a
given rotation angle 6 of the encoding grating, the CCD
computes the intensity distribution that can be separated
into three terms corresponding by analogy to the three
different diffraction orders of the recorded hologram. But
the interest in the DHIA lies in the —1st hologram order
because it has information about the complex amplitude
distribution of the input object. Let us call this term
Iy(x,y). So, provided that the carrier frequency of the ho-
lographic recording should be high enough to ensure the
nonoverlapping between the zeroth-order term and the
first diffraction order of the recorded hologram—that is,
no=3Av—the -1st diffraction can be filtered and cen-
tered at the Fourier domain. Thus, it is possible to apply
the rotating grating approach to such spectral distribu-
tion.

At this point, some comments must be introduced.
First, note that the zeroth-order term of the recorded ho-
logram is exactly the same as the one that was analyzed
in DIA [Eq. (6)]. The only difference comes from the addi-
tion of a constant originated from the reference beam.
Thus, a procedure similar to DIA can be performed over
this term. Second, and going ahead with the digital decod-
ing process, it is convenient to our superresolved purposes
that the frequency bands selected by the encoding grating
contiguous bands. This can be achieved by proper selec-
tion of the basic frequency v, of the encoding grating (v,
=2Av). And third, § must run between at least 0 and 180°
to obtain a final 2-D superresolved image.

After recovering the —1st hologram diffraction order, a
similar procedure to that which is shown for DIA is per-
formed taking into account at least 180° in the rotation
grating approach. Equation (19) below summarizes this
process, where no Fresnel propagation is in principle com-
puted for the decoding grating, and a different rotation
angle ¢ # 6 is again considered:

n,0 ke

Tz(u,v) =R*2 2 Cn’Bk{[f(u,v) ® S8u +nvyycos 6,v

p
+ ny sin 0)]circ(A—>} ® Su + kvy cos g,v
14

+ kg sin @)
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=R > cC! Bk{t(u v)[cu‘c(A ) ® du

0,0 nk
—nvg cos 6,v —ny, sin 0)}} ® du+(ncos 0

+ k& cos @)vy,v + (n sin O+ k sin ¢)vy]. (19)

To obtain the SR effect, the convolution with the last
delta function must be centered at the Fourier domain.
This is accomplished if n cos 6+% cos ¢=0 and nsin 6
+k sin ¢=0, which means that ¢=60+mm, m=0,1,2... and
k=-n. The fact that ¢=6+I7 and [=0,1,2... forces the
digital grating to have the same line orientation as the
encoding grating, that is, both gratings must be parallel.
Now, it is more convenient to separate Eq. (19) into three
different terms and analyze them separately:

Iz(u v)=R* 2 E 2 CnB_n{t(u v){cu‘c(; ) ® Su

n k=-n

—nyycos 6,v —ny, sin 0):|}

+RY DD COBk{t (u v)mrc( )} ® &u

6 n=0k#-n

+ kv cos 6,v + Ry, sin 6)

+R> DD Bk{t(u v)|:cn'c< ) ® dlu

0 n#0k#-n
—nycos 6,v —ny, sin 0)}} ® u+(n

+k)vy cos B,v + (n + k) vy sin 6)
= T1(u,v) + To(u,v) + Ts(u,v). (20)

Note that both (n,%k) indexes continue taking all pos-

sible values. The first term Tl(u,v), corresponding to the
indexes combination k=-nVn, yields the SR effect when
the rotating grating process is performed. In such a case,
we can see that the circular limited aperture of the sys-
tem is now convolved with a combination of delta func-
tions that implies the generation of a SA. Figure 2 shows
for an easy interpretation the SA generation considering
that both gratings have three diffraction orders (n,k=
-1,0,+1). The gray circles represent the CTF of the im-
aging system, and the black point at the spectrum’s cen-
ter represents the DC term in the object’s spectrum. As a
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consequence of the continuous overlapping for each decod-
ing grating orientation, the central frequency band is re-
inforced.

So, in order to obtain a well-balanced final image, an
equalization of this central part is needed. We can rewrite
the first term of Eq. (20) as

Ty (u,v) =(u, v)@R*EC SA,(u,v), (21)

n—-n

where

p
SA,(u,v) = E circ(A—> ® 8u +nyycos 6,v + ny,sin 6)
) 14

(22)

is the generated SA. Comparing Eq. (21) with the desired
result for DHIA [see Appendix A, Eq. (A1)], the result co-
incides, provided that

Jj\z exp(jkz)R*C,B_, exp[-jm\zn’v,2] = A,.  (23)

The second term Tz(u ,0) is due to the indexes combina-
tion of n=0, Vk #-n as we can see in

Tou,v)=R*>, > > COBk{t(u v)czrc( P )}

0 n=0k#*-n
® Su + kvycos 6,v + kv sin 6). (24)

Taking a detailed look, the term in the square brackets
in Eq. (24) implies that the central part of the object’s
spectrum is filtered by the limited system aperture and
centered at the positions defined by the diffraction orders
of the decoding grating (£ #0). As in DIA, the decoding
produces something similar to a circle at the Fourier do-
main by dragging the DC term of the object’s spectrum.
This fact is depicted in Fig. 3 assuming again that both
gratings have three diffraction orders (n=-1,0,+1). The
enhanced black circle is generated when the overall rotat-
ing grating process is done and causes high distortion
when the FT is produced to obtain SR.

In addition to the Tz(u,v) term, the third term Tg(u,v)
corresponding to the combination of the indexes of n#0,
Vk # —n also distorts the final image:

tot 0=45° ++ 0=90° t...+ B=135° +t...+ 0=180° _1

%a@%%%@ @®

Fig. 2. SA generated using DHIA. The smaller circles represent the region of the frequency space that is observable through the con-
ventional system aperture in comparison with the right-hand figure, which shows the SA (external black circle) achieved using the DHIA

approach.
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Fig. 3. Distortion generated in DHIA. The object’s spectral DC term is represented by a black point at the center of the laterally posi-
tioned gray circles and was generated by dragging the enhanced black circle represented in the SA after performance of the DHIA

approach.

Ts(u,v)=R*Y, >, >, C, Bk{t(u v){cn‘c(; )

0 n#0k#-n
® S8(u —nyycos 6,v —ny, sin 6)}}

® Su+ (n+k)vycos 6,v+ (n+k)vysin 6).
(25)

In Eq. (25), the square-brackets convolution selects a new
contiguous frequency band of the object’s spectrum. This
additional object information is centered over the diffrac-
tion orders of the decoding grating with the particularity
that they are different from the initial ones (2 #n).

Figure 4 depicts an example given by (n=1,£=0,1) and
for vertical line grating orientation (#=0°). We can see
that the selected object frequency band is the right one
[Fig. 4(a)], and it is centered at the left and zero order po-
sitions [Fig. 4(b)]. This means that Eq. (25) has two con-
tributions for each pair of values (n #0, 6). The first one
corresponds with the relocation given by £=n, that is, the
left circle in Fig. 4(b). Note that when the rotating grating
process is performed, the left frequency band describes a
circle in a similar way as that represented in Eq. (24).

The second contribution corresponds to the relocation
given by £=0, that is, at the central region of the Fourier
domain. This division is very important and suggests that
Eq. (25) may be separated into two terms in accordance
with the previous comment:

T3(u v) = R*E 2 2 C’ Bk{t(u v)[mrc( P ) ® du
0 n#0k#-n Av
k=n

—nvycos 6, —ny, sin 6)}} ® Su+(n
+k)vycos O,u + (n + k)yy sin 6)
(a) (b)

N

L

N

Fig. 4. (a) Overall object spectrum and selection of the right fre-
quency band corresponding to the combination (n=1, #=0°), and
(b) its relocation during the decoding process at the left and cen-
tral position given by k # 1.

+R DD Bo{t(u v)|:c1rc< ) ® dlu

0 n#0k#-n
k=0

—nvgcos 6,v —nyy sin 0)]} ® 8u +nyycos 6,v

+nyysin 6). (26)

Once again, the exposed mathematical foundation sug-
gests an additional digital postprocessing to obtain a
high-quality superresolved image free of distortion when
DHIA is performed. In that sense, mathematical deriva-
tion analogous to that performed for DIA can be per-
formed for DHIA.

6. COMPUTATIONAL SIMULATION
FOR DIA

The proposed rotating grating approach is investigated by
a simulation process with a double aim. On one hand, it
implies the validation of DIA depicted in Fig. 1 and theo-
retically developed in Section 4. On the other hand, it
shows the required digital processing needed to yield a
high-quality superresolved image after performing DIA.

A picture of the central part of a United States Air
Force (USAF) resolution test target (see Fig. 13 below) is
used to test the capabilities of the DIA. The encoding and
decoding gratings used in the simulations are sinusoidal,
and a resolution gain factor of 3 will be achieved. To simu-
late the noncontact effect of the encoding grating onto the
object at the input plane, we use a process of double digi-
tal fractional FT as described in Ref. [51]. Figure 5 shows
in (a) the low-resolution image of the object and its FT,
and in (b) the high-resolution image (desired result) ob-
tained with an expanded pupil that triples the low-
resolution one. The dashed white circle in Fig. 5(b) repre-
sents the CTF of the optical system.

Then, we perform the SR approach where the USAF in-
put object is subjected to the encoding process. In this, the
encoding grating is rotated from 0° to 180° in 1° steps and
a sequence of 180 images is stored in the computer
memory. To obtain the SR effect, we need to perform the
digital decoding stage, in which each one of the 180 stored
images is digitally multiplied by a decoding grating with
the same line orientation (same rotation angle) as that
used in the encoding process to store each particular im-
age.

The whole decoding procedure is depicted in Fig. 6(a).
The central dashed circle represents the limited system
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Fig. 5. (a) Low-resolution image of the input object provided by the system without the approach present, (b) its FT, and (c¢) the desired
high-resolution image (that obtained with an aperture that triples the original one).

Fig. 6. (a) Total spectrum when digital decoding is produced, (b) FT of the image shown in (a), and (¢) FT of the whole intensity dis-

tribution recorded at the CCD.

aperture for the coherent case, and the left and right
dashed circles represent the pupil function centered at
the +1st diffraction orders of the digital decoding grating
when the grating lines are vertical. Obviously, for each ro-
tation angle of the encoding process, both lateral dashed
circles turn around the central one generating the 2-D
spectral distribution. But at the same instant, the zeroth
order of each recorded image is also placed at the posi-
tions defined by the decoding grating diffraction orders.
This generates a circle at the Fourier domain. That circle
is indicated by a white arrow in Fig. 6(a), and it is respon-
sible for a high distortion in the reconstructed image, as
we can see in Fig. 6(b).

According to the theory, the decoding process produces
the SR effect by properly replacing the different correla-
tion terms due to the structured illumination [Eq. (10)],

but introduces high distortion because it duplicates sev-
eral times other correlation terms in the wrong places
[Egs. (13) and (14)]. To avoid this undesired distortion, a
digital postprocessing is necessary. We add all the single
stored images together and perform an operation similar
to the previous digital decoding process, but taking into
account only the +1st diffraction orders of the digital de-
coding grating (not the zeroth order). The addition of all
the single recorded images is depicted in Fig. 6(c), and the
new digital procedure is shown in Fig. 7(a), where we can
see the dragged circle produced by the DC term [indicated
by the arrow in Fig. 6(a)] in a most obvious way.

Now, if we subtract Fig. 7(a) from Fig. 6(a)—first pro-
viding that the intensity of both images has been previ-
ously equalized—we obtain a “clean” superresolved spec-
trum where most of the distortion is avoided. The result is

Fig. 7. (a) Dragged DC term of the diffraction orders of the digital decoding grating, (b) final synthesized spectrum, and (c) FT of the

image shown in (b) that shows the final superresolved image.
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(©)

Fig. 8. (Color online) (a) PSF intensity without the present approach, (b) PSF intensity with the present approach, and (c) cross section
of the PSF depicted in (a) and (b) that shows the improvement in resolution.

depicted in Fig. 7(b). Finally, by FT of the spectrum rep-
resented in Fig. 7(b), the final superresolved image is ob-
tained in (c). Note that not only the distortion introduced
by the DC term has been removed, but also the distortion
due to the autocorrelation of the frequency bands selected
by the +1st diffraction orders of the encoding grating.
Thus, only the terms represented in Eq. (17) provide a
less significant distortion that results in the little differ-
ence between Fig. 5(c) and Fig. 7(c).

Simulation results are also provided in Fig. 8 for the
case when the input object is a delta function. In such a
case, we obtain the intensity point-spread function (PSF)
of the system. Figures 8(a) and 8(b) depict the intensity
PSF without and with the present approach, respectively,
and Fig. 8(c) shows a comparative cross section between
them where the blue (outer) and red (inner) plotted

=m .. 1

=l #es T3
=m . —2 Il
= I”'—" “

curves depict the cross section without and with the pre-
sented approach, respectively.

7. COMPUTATIONAL SIMULATION FOR
DHIA

In this section, a simulation process for DHIA is pre-
sented. Again, both encoding and decoding gratings have
three diffraction orders and a resolution improvement
factor of 3 will be aimed for. DHIA has been tested in
simulation for two different objects: the central part of a
negative USAF resolution test target image and a Bar-
bara image. Figure 9 shows a picture of both objects, their
FTs, and the low-resolution image obtained with the lim-
ited aperture imaging system and without using the pre-
sented approach. Once again, the white circle in Figs. 9(b)

kil

Fig. 9. (a), (d) show the input objects: USAF resolution test and Barbara images, respectively; (b), (e) Fourier transformations of (a) and
(d), where the white circle represents the limited system aperture; and (c), (f) the low-resolution images obtained taking into account an

imaging system with the previous limited aperture.
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and 9(e) depicts the CTF of the imaging system. The ra-
dius of the CTF has been adjusted for each input object in
such a way that the SR effect will be clearly noticeable.

Now, the simulation process is performed with the par-
ticularity of the introduction of a constant coherent refer-
ence beam at the output plane. Figure 10 shows an ex-
ample of the simulated holograms in both spatial and
Fourier domains. Unlike in the mathematical develop-
ment, the reference beam used in the simulation analysis
has a bias carrier frequency in the two orthogonal direc-
tions (ug,vy), and the condition to fulfill is \ ,u02+002
=3Av to avoid the overlapping of the +1st diffracted or-
ders with the central one. Figure 11(d) depicts this situa-
tion graphically.

Then, the —1st diffraction order of each stored holo-
gram is filtered, replaced at the center of the Fourier do-
main, and multiplied by a digital decoding grating with
the same orientation as that used in the encoding process.
Figures 11(a) and 11(d) image the results at the Fourier
domain when the rotating grating process is performed.
We can see the dragged circle generated as a consequence
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of the objects spectrum DC term. Moreover, as we had
commented previously, the central part of the object’s
spectrum (that corresponding with the zeroth order of the
decoding grating) is reinforced in the decoding process by
multiple overlapping of itself, and an equalization must
be made [Figs. 11(b) and 11(e)]. Finally, Figs. 11(c) and
11(f) depict the reconstructed image by FT of (b) and (e),
respectively. We can see the high distortion introduced as
a consequence of the undesired frequency bands that are
replicated at the Fourier domain in the performance of
our approach and which correspond with Eqs. (24) and
(26).

To obtain a good-quality final image, we perform an ad-
ditional digital postprocessing similar to that presented
in the DIA case. Thus, all the filtered and centered —1st
hologram orders are added into one, and this resultant
spectral distribution is replicated to the x1st diffraction
order positions of the digital decoding grating for the 180°
of the decoding rotating process. Figures 12(a) and 12(d)
show this process, where we can see the dragged circle
produced by the DC term in a most obvious way. Now, if

Fig. 10. (a), (¢) Simulated holograms for USAF and Barbara objects, and (b), (d) their Fourier transformations, respectively. The central

pixel has been blocked to enhance the visibility of the overall image.
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Fig. 11. (a), (d) Raw result of the present approach, and (b), (e) equalized central part of the object spectrum. (c), (f) show the distorted

final image.

we subtract these Fourier distributions from Figs. 11(b)
and 11(e), respectively—and provided that the intensity of
both pair of images has been previously equalized—we
avoid most of the distortion in the synthesized spectrum.
The final generated SA without the DC term is depicted in

Figs. 12(b) and 12(e). Finally, the final superresolved im-
age is obtained by FT [Figs. 12(c) and 12(f)].

Note that not only the distortion introduced by the DC
term has been removed [Eq. (24)], but also the distortion
provided by the frequency bands selected by the +1st dif-

Fig. 12. (a), (d) Digital procedure to avoid distortion; (b), (e) generated SA in comparison with the real one (white circle); and (c), (f) final

superresolved images obtained with the present approach.
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fraction orders of the encoding grating that are placed at
the +1st diffraction orders of the decoding one [first term
in Eq. (26)]. Because that digital postprocessing is pro-
duced with the addition of all the stored holograms, the
frequency bands represented in the second term of Eq.
(26) are also subtracted from the final Fourier distribu-
tion. Thus, only the second term in Eq. (26) contributes to
distort the final result. But such contribution is not criti-
cal because it has much less intensity than the final su-
perresolved image. Because the zeroth order of the ob-
ject’s spectrum is added 180 times in the central region
(zeroth order of both encoding and decoding gratings), the
contribution of the lateral frequency bands’ addition in
comparison with that of the reinforced zeroth order band
will be negligible.

8. CONCLUSIONS

In this paper we have presented a wide review of super-
resolution techniques with special emphasis on tech-
niques that imply time multiplexing while generating a
synthetic aperture without changing optical parameters
of the imaging systems. Moreover, a new superresolution
approach based on rotating grating movement for tempo-
rally restricted objects in digital imaging systems has
been described. This new approach is based on structured
illumination incoming from a 1-D physical grating that is
placed near but not in close contact with the input object.
Thus, after performing the rotating grating approach and
a digital postprocessing of the recorded sequence of im-
ages, a superresolved image is obtained in terms of a syn-
thetic aperture generation. The presented approach has
been mathematically analyzed and tested via computa-
tional simulations for two cases: digital imaging approach
(DIA) and digital holographic imaging approach (DHIA).
Both of these approaches can be directly applied to mi-
croscopy while yielding a superresolved synthetic aper-
ture. As a result of the simulations presented, a 2-D res-
olution gain factor of 3 is achieved in comparison with the

—
P—
—
-
pa—
—
p—
—_—
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resolution of the same imaging system without using our
approach. But a higher gain in resolving power can be
achieved if the number of diffraction orders of the encod-
ing grating is increased and the digital postprocessing is
modified accordingly.

APPENDIX A: DESIRED RESULT

Bearing in mind that the SR principle presented here is
based on the generation of a SA by addition of contiguous
frequency bands of the object’s spectrum, and in order to
gain simplicity in the mathematical analysis, let us divide
the FT of the object amplitude distribution in a set of con-
tiguous circular apertures that generate the full object’s
spectrum as is depicted in Fig. 13. Mathematically, this
assumption means that

_ _ P
tr(u,v) = E EAnt(u,v){circ(Av) ® Su +nyycos 6,v
6 n

+nyg sin 6’)} . (A1)

Equation (A1) represents the FT of the object after be-
ing filtered by a compound aperture equal to

p
Hn(u,v)zzzAn circ(A )® Su + nyg cos 6,v
6 n

Av
+nv,sin 6) (A2)

and represents the desired result for the coherent case,
that is, for DHIA of an optical system with unit magnifi-
cation.

In the incoherent case and because the CCD performs
an intensity recording process, we are interested in evalu-
ating the FT of the intensity distribution captured by a
CCD that is the autocorrelation of Eq. (A1):

Fig. 13. (a) Object image and (b) its FT that can be separated in diffrerent contiguous circles.
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FTUIu,0)] = FT([Zp(u,0)?1= >, >, AA, 8w, v)H,(u,v)]

6 nm

* [E(w,0)H,,(u,0)], (A3)

where * denotes the autocorrelation. Thus, Eq. (A3) rep-
resents the output image that we want to receive from the
SR system in the case of DIA.
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